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Distributed Satellite Missions (DSM) will play a 
role in future Earth Observing Systems

3



Current Pre-Phase A tools are not well suited 
for DSM
• Needs in Pre-phase A:

• Check feasibility of meeting requirements 

• Evaluate a sufficient number of alternatives

• Conduct trade studies and what-if analyses

• Propagate satellite orbits with sufficient accuracy over long periods of time

• Calculate performance metrics (e.g., mean revisit time) and others (e.g., cost, risk)

• Challenges
• High number of vehicles to simulate

• Combinatorial explosion of alternatives

• Both of these significantly increase computational cost

• TAT-C (AIST14) was developed to address these challenges
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Tradespace Analysis Tool for Constellations 
(TAT-C, AIST14 project)
• Goal: To Provide a framework to 

perform pre-Phase A mission 
analysis of DSM

• Handle multiple spacecraft sharing 
mission objectives

• Explore tradespace of variables for 
pre-defined science, cost and risk 
goals and metrics

• Optimize cost and performance 
across multiple instruments and 
platforms instead of one at a time

• Include sets from smallsats through 
flagships
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TAT-C Example of results: Sustainable Land 
Imaging
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TAT-C’s tradespace search capabilities are 
limited
• Currently, TAT-C uses a brute-force 

design of experiments approach for 
searching the tradespace

• No optimization – just screening of the 
tradespace

• Many unpromising architectures are 
evaluated

• Cannot start seeing results until all 
alternatives have been evaluated
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TAT-C ML (AIST16 project)

• Increase the dimensionality and 
modeling depth of TAT-C’s trade-
space analysis capabilities with:
• Various trajectories, orbital planes, 

mission replanning, orbit and 
Maneuver Modeling, etc.

• New modules (instrument, launch, 
onboard computing, etc.)

• Optimize the Trade-Space Exploration 
by Utilizing Machine Learning and a 
Fully Functional Knowledge Base (KB) 
to Efficiently Traverse a Large Trade-
Space

Results

Improved	GUI

DSM	Knowledge	Base

If	validation,	proceed	with	trade-space	analysis	and	

KB	provides	model	inputs	to	all	modules	

Repeated	or	

improper	search

Tradespace	Search	
Request	(TSR)	

Requirements

Validation

Cost	&	Risk	
(C&R)	Module

Extending	Risk	
Module,	including
Ground	Operations

Tradespace Search	Iterator	
(TSI)

Machine	Learning	Based	TSI,	
augmented	with Mission	Ops	&	

Replanning,	Comms and	
Instrument	Trades

Reduction	and	Metrics

Launch	
Module

Orbit	&	Coverage	
(O&C)	Module

Orbit	&	Maneuver

Instrument	
Module

Onboard	
Computing	
Module

Support	
Modules:	
respond	to	
requests	
from	TSI	
and	C&R
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Enhancing tradespace search with AI and ML

• Speed up the search and avoid unnecessary expensive function evaluations

• Baseline search/optimization using a multi-objective evolutionary 
algorithm (epsilon-MOEA). Example: min avg revisit time and min cost 

• Maintain a pool of operators and use ML to figure out which ones work 
best (~reinforcement learning) 

• Pool may contain: 
• Domain-independent operators: different kinds of Crossover, mutation, etc.
• Or Domain-specific!

• Domain-specific operators may be available before the search or 
discovered online
• Use feature extraction techniques (association rule mining, mRMR)
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Baseline evolutionary algorithm: ε-MOEA

• Evolutionary algorithms mimic 
natural evolution

• Main operators:
• Selection
• Crossover
• Mutation

• Many types of crossover/mutation 
exist, each with parameters to tune

• Epsilon-MOEA
• Steady-state algorithm
• Maintains an archive of best solutions 

found so far
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Generate offspring

Evaluate offspring and 
insert into population

Increment Iteration
𝑡 ← 𝑡 + 1

Create and evaluate 
initial population

START

END

Update population and 
archive

terminate

continue

Check Termination 
Criteria

Baseline evolutionary algorithm



Adaptive operator selection (AOS)

• Pool of operators; ML layer to learn which one(s) work 
best

• Credit assignment: Measure performance of each 
operator over time

• 𝑐𝑖,𝑡 = credit received by 𝑜𝑖 at iteration t
• Example: 𝑐𝑖,𝑡 ∝ 𝑓 𝒙𝑝 − 𝑓 𝒙𝑜𝑖,𝑡

• Operator selection: Assign solutions to operators 
proportionally to their quality (𝑞𝑖,𝑡 = quality of operator 
𝑜𝑖 at iteration t). For example: 

𝑞𝑖,𝑡+1 = 1 − 𝛼 ⋅ 𝑞𝑖,𝑡 + 𝛼 ⋅ 𝑐𝑖,𝑡

𝑝𝑖,𝑡+1 = 𝑝𝑚𝑖𝑛 + 1 − 𝑂 ⋅ 𝑝𝑚𝑖𝑛 ⋅
𝑞𝑖,𝑡+1

σ
𝑗=1
|𝑂|

𝑞𝑗,𝑡+1

𝛼 ∈ 0,1 = adaptation rate

𝑝𝑚𝑖𝑛 = minimum selection probability 
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AOS works with benchmark problems

• We measured performance of 9 different AOS approaches (new and existing) on 26 
different benchmarking multi-objective problems (WFG, UF, DTLZ)

• AOS consistently outperform state-of-the-art EA over wide range of problems

• AOS discover the operator(s) that work better for each problem
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Adding knowledge-driven operators

• Domain- and potentially problem-specific operators

• Expressed in first-order logic format

• Stored in knowledge base; can be reused
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Using knowledge-driven operators is 
challenging

• Rely on quality of knowledge 

• Reasonable expert knowledge 
may be useless for a particular 
problem

• Reduction in diversity of 
solutions

• Premature convergence
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AOS enables using existing knowledge 
(adaptive operators better than constraints)

O-AOS: Operators – Adaptive Operator Selection
C-DNF: Constraints – Disjunctive Normal Form
C-ACH: Constraints – Adaptive Constraint Handling
HV: hypervolume (performance metric in MOO, large-is-better)
NFE: Number of function evaluations
Thick lines: Statistically significantly higher median than ε-MOEA (Wilcoxon rank-sum, 𝑛 = 30, 𝑃 < 0.05)
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On-line discovery of new operators

• New operators can be discovered 
online using feature extraction

• Approach: 
• Use association rule mining (a priori 

algorithm) to search space of 
conjunctions of features for target 
region C (top 25% architectures)

• Use mRMR to select best 4 features

• Make operators from best features

• Add operators to pool

• Repeat every 1000 iterations

𝑠𝑢𝑝𝑝 𝐹 ≡
𝐹

𝑈

𝑐𝑜𝑛𝑓 𝐹 ⇒ 𝐶 =
𝑠𝑢𝑝𝑝 𝐹∩𝐶

𝑠𝑢𝑝𝑝 𝐹
(consistency, specificity)

𝑐𝑜𝑛𝑓 C ⇒ F =
𝑠𝑢𝑝𝑝 𝐹∩𝐶

𝑠𝑢𝑝𝑝 C
(coverage, generality)

mRMR: Φ𝑖 = Φ𝑖−1 ∪ max
𝐹𝑖∈Φ\Φ𝑖−1

𝐼 𝐹𝑖 , 𝐶 −
1

𝑖−1
σ𝐹𝑗∈Φ𝑖−1

𝐼 𝐹𝑖 , 𝐹𝑗

16

relevancy redundancy



New operators also improve search efficiency

• KDO: Knowledge-Driven 
Optimization

• \AOS: Adaptive Operator 
Selection

• \R: Random Operator Selection

• \C: Operators as Constraints

• HV: hypervolume (performance 
metric in MOO, large-is-better)

• NFE: Number of function 
evaluations

• Thick lines: Statistically 
significantly higher median 
than ε-MOEA (Wilcoxon rank-
sum, 𝑛 = 30, 𝑃 < 0.05)
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Status and future work

• Finalizing overall architecture of TAT-C ML

• Integrating MOEA-AOS with TAT-C

• Integrating MOEA-AOS with KB

• Demonstration of TAT-C prototype with KB and eps-MOEA by August

• Develop operators for coverage problems

• Integrate an validate AOS capability with offline operators

• Integrate and validate online learning

• Validated tool by August 2019
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